Search results for "beam purification"

showing 7 items of 7 documents

PIPERADE: A double Penning trap for mass separation and mass spectrometry at DESIR/SPIRAL2

2021

International audience; A double Penning trap is being commissioned at CENBG Bordeaux for the future DESIR/SPIRAL2 facility of GANIL. The setup is designed to perform both high-resolution mass separation of the ion beam for trap-assisted spectroscopy, and high-accuracy mass spectrometry of short-lived nuclides. In this paper, the technical details of the new device are described. First offline tests with the purification trap are also presented, showing a mass resolving power of about 105.

PhysicsNuclear and High Energy PhysicsSpeichertechnik - Abteilung BlaumMass spectrometryIon beamPenning trap010401 analytical chemistryMass spectrometryPenning trap01 natural sciencesMass separation0104 chemical sciencesNuclear physicsTrap (computing)0103 physical sciencesBeam purificationNew device[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclide010306 general physicsSpectroscopyInstrumentationDESIR/SPIRAL2
researchProduct

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

2012

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

Nuclear and High Energy Physics[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesFranciumIonization0103 physical sciencesPhysics::Atomic PhysicsLaser spectroscopyNuclear Experiment010306 general physicsSpin (physics)SpectroscopyInstrumentationHyperfine structureComputingMilieux_MISCELLANEOUSLarge Hadron ColliderIsotopeRadioactive decay spectroscopy010308 nuclear & particles physicsIon beam purificationIsotope shiftchemistry13. Climate actionPhysics::Accelerator PhysicsHyperfine structureAtomic physicsRadioactive decayNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Separation of atomic and molecular ions by ion mobility with an RF carpet

2021

Gas-filled stopping cells are used at accelerator laboratories for the thermalization of high-energy radioactive ion beams. Common challenges of many stopping cells are a high molecular background of extracted ions and limitations of extraction efficiency due to space-charge effects. At the FRS Ion Catcher at GSI, a new technique for removal of ionized molecules prior to their extraction out of the stopping cell has been developed. This technique utilizes the RF carpet for the separation of atomic ions from molecular contaminant ions through their difference in ion mobility. Results from the successful implementation and test during an experiment with a 600~MeV/u $^{124}$Xe primary beam are…

low-energy RIBPhysics - Instrumentation and DetectorsOrders of magnitude (temperature)beam purificationFOS: Physical sciences010402 general chemistrynucl-ex01 natural sciences530Ionmenetelmätion mobilityIonizationMoleculeddc:530Physical and Theoretical ChemistryfysiikkaNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationphysics.ins-detSpectroscopyIon transporterRange (particle radiation)ionitChemistry010401 analytical chemistryExtraction (chemistry)gas cellpuhdistusInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics0104 chemical sciencesmolecular contaminationBeamlinespace chargeAtomic physicserottaminen (tekniikka)epäpuhtaudet
researchProduct

Recent Exploits of the ISOLTRAP Mass Spectrometer

2013

Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…

Penning-trap mass spectrometryNuclear and High Energy PhysicsLarge Hadron ColliderIon beam analysisChemistry010401 analytical chemistryMeasurement of pure ion ensembles[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPMulti-reflection time-of-flight mass separator0104 chemical sciencesSecondary ion mass spectrometryNuclear physicsIon-beam analysis0103 physical sciencesBeam purificationIon trapAtomic physics010306 general physicsNuclear ExperimentInstrumentationHybrid mass spectrometer
researchProduct

CRIS: A new method in isomeric beam production

2013

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

Ion beamRadioactive decay spectroscopyPhysicsQC1-999chemistry.chemical_elementIon beam purificationFranciumSemiconductor detectorIsotope shiftchemistryIonizationPhysics::Atomic and Molecular ClustersPhysics::Accelerator PhysicsNeutronHyperfine structurePhysics::Atomic PhysicsAtomic physicsLaser spectroscopySpectroscopyNuclear ExperimentBeam (structure)Radioactive decay
researchProduct

High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

2016

The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219;221Fr, and has measured isotopes as short lived as 5 ms with 214Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of singleisotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. publisher: Elsevier articletitle: High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) exp…

Nuclear and High Energy Physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceslaw.inventionLaser linewidthlawIonization0103 physical sciencesNuclear Physics - ExperimentLaser spectroscopy010306 general physicsSpectroscopyInstrumentationHyperfine structureLarge Hadron Collider010308 nuclear & particles physicsChemistryData acquisitionResonanceLaserIon beam purificationIsotope shiftFull width at half maximumHyperfine structureAtomic physicsNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Removal of molecular contamination in low-energy RIBs by the isolation-dissociation-isolation method

2020

Nuclear instruments & methods in physics research / B 463, 324 - 326 (2020). doi:10.1016/j.nimb.2019.04.072

low-energy RIBNuclear and High Energy PhysicsMaterials scienceCollision-induced dissociationbeam purificationtutkimuslaitteet53001 natural sciencesDissociation (chemistry)RF-quadrupolelaw.inventionIonlawDipole magnet0103 physical sciencesddc:530Instrumentation010308 nuclear & particles physics010401 analytical chemistryContaminationSynchrotronIon source0104 chemical sciencesmolecular contaminationBeamlinecollision-induced dissociationPhysics::Accelerator PhysicsAtomic physicsydinfysiikkaNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct